
1. Data Quality & Integrity 
Completeness – Is all required project, financial, and operational data collected and available? 

Accuracy – Are data sources free from inconsistencies, duplicates, and manual entry errors? 

Consistency – Do data fields have uniform formats and naming conventions across systems? 

Timeliness – Is data updated in real-time or at a frequency that supports AI-driven decision-making? 

Data Governance – Are there clear policies for validation, correction, and standardization? 

2. Data Integration & Accessibility 
System Interoperability – Can data from ERP, project management, and financial systems be integrated?

APIs & ETL Pipelines – Are there APIs or ETL processes in place to automate data ingestion? 

Data Silos – Is critical data stored in separate, disconnected systems, making it difficult to access?

Cloud vs. On-Premises – Is data stored in a cloud environment that supports scalability and AI processing?

Metadata & Lineage – Can data origin, transformations, and dependencies be traced end-to-end?

5. AI & Machine Learning Readiness 
Feature Engineering Potential – Can key variables be easily extracted and transformed into meaningful
features for ML models?

Historical Data Availability – Are there sufficient historical records to train predictive models? 

Real-Time Processing – Is data accessible in real-time for AI-driven recommendations and automation?

Anomaly Detection & Drift Monitoring – Are there methods to track changes in data distribution over time?

Model Hosting & Deployment – Can AI models be deployed and integrated into decision-making workflows?

6. Data Pipeline Automation 
Orchestration Tools – Are tools like Apache Airflow, Kubernetes, or Prefect used to manage data workflows?

Data Quality Monitoring – Are automated checks in place to detect missing, duplicate, or inconsistent data?

Version Control – Are dataset versions tracked to prevent model degradation over time? 

ETL Performance Optimization – Are data pipelines optimized for processing speed and resource efficiency?

Self-Healing Pipelines – Do workflows have automated failure detection and retry mechanisms? 

3. Data Structure & Storage 
Schema Design – Is data structured in a way that supports complex queries and ML model training?

Unstructured Data Handling – Can the system process PDFs, images, IoT sensor data, and other
unstructured formats?
Scalability – Can the storage infrastructure handle large datasets required for AI workloads? 
Data Lakehouse Readiness – Are raw and processed data stored in a manner suitable for analytics and AI?
Compression & Indexing – Are database optimizations like indexing and partitioning in place to
improve query performance?

4. Data Security & Compliance 
Access Controls – Is role-based access control (RBAC) implemented to secure sensitive data?

Ownership – Is data and intellectual property protection guaranteed and clear to third parties? 

Encryption – Is data encrypted at rest and in transit to meet security standards? 

Compliance Standards – Does the data architecture align with regulations such as GDPR, CCPA, or
industry-specific standards?
Auditability – Are logs maintained to track changes and access to critical datasets?

Data Anonymization – Is PII (Personally Identifiable Information) masked or tokenized where required?

What’s Next? 
Analyze the Gaps – Identify weaknesses in data
quality, integration, governance, or automation that
could derail AI initiatives. 
Prioritize Fixes – Address critical data issues first,
such as eliminating silos, improving security, or
automating pipelines. 
Build a Business Case – Use findings to justify
infrastructure investments and align IT strategy with
AI goals. 

Or consult an expert!

Engage with LoadSpring to discuss next steps, from data
transformation to AI implementation.
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